Schwann cell proliferation during Wallerian degeneration is not necessary for regeneration and remyelination of the peripheral nerves: axon-dependent removal of newly generated Schwann cells by apoptosis.

نویسندگان

  • David P Yang
  • Dan P Zhang
  • Kimberley S Mak
  • Daniel E Bonder
  • Scott L Pomeroy
  • Haesun A Kim
چکیده

Peripheral nerve injury is followed by a wave of Schwann cell proliferation in the distal nerve stumps. To resolve the role of Schwann cell proliferation during functional recovery of the injured nerves, we used a mouse model in which injury-induced Schwann cell mitotic response is ablated via targeted disruption of cyclin D1. In the absence of distal Schwann cell proliferation, axonal regeneration and myelination occur normally in the mutant mice and functional recovery of injured nerves is achieved. This is enabled by pre-existing Schwann cells in the distal stump that persist but do not divide. On the other hand, in the wild type littermates, newly generated Schwann cells of injured nerves are culled by apoptosis. As a result, distal Schwann cell numbers in wild type and cyclin D1 null mice converge to equivalence in regenerated nerves. Therefore, distal Schwann cell proliferation is not required for functional recovery of injured nerves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization of Epidermal-Type Fatty Acid Binding Protein (E-FABP) in Degeneration and Regeneration of Sciatic Nerve after Crush Injury in Mouse

Purpose:The regeneration of axon and myelin sheet after crush injury of peripheral nerves involves interaction of several types of cells, including Schwann cells, monocyte, macrophage and fibroblast. Among them, haematogenous macrophages invading into the peripheral nervous systein play a major role in myelin uptake during Wallerian degeneration. Materials and Methods: In this study 35 C57/BL6 ...

متن کامل

Melatonin Induced Schwann Cell Proliferation and Dedifferentiation Through NF-ĸB, FAKDependent but Src-Independent Pathways

Background: Peripheral nerve injury (PNI) is a common condition that compromises motor and sensory functions. Peripheral nerves are known to have regenerative capability and the pineal hormone, melatonin, is known to aid nerve regeneration. However, the role of Schwann cells and the pathways involved remain unclear. Thus, the aim of this study is to identify the effects of melatonin on Schwann ...

متن کامل

Stem Cell Transplantation for Peripheral Nerve Regeneration: Current Options and Opportunities

Peripheral nerve regeneration is a complicated process highlighted by Wallerian degeneration, axonal sprouting, and remyelination. Schwann cells play an integral role in multiple facets of nerve regeneration but obtaining Schwann cells for cell-based therapy is limited by the invasive nature of harvesting and donor site morbidity. Stem cell transplantation for peripheral nerve regeneration offe...

متن کامل

Peripheral regeneration.

Whereas the central nervous system (CNS) usually cannot regenerate, peripheral nerves regenerate spontaneously after injury because of a permissive environment and activation of the intrinsic growth capacity of neurons. Functional regeneration requires axon regrowth and remyelination of the regenerated axons by Schwann cells. Multiple factors including neurotrophic factors, extracellular matrix...

متن کامل

Roles of channels and receptors in the growth cone during PNS axonal regeneration.

Neurons in the peripheral nervous system (PNS) are known to maintain a regenerative capacity and will normally regenerate their axons within a permissive growth environment. The success of regeneration in the PNS largely depends on maintenance of the supportive basal lamina membrane, efficient removal of axonal and myelin debris by macrophages and Schwann cells, expression of neurotrophic facto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular neurosciences

دوره 38 1  شماره 

صفحات  -

تاریخ انتشار 2008